Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
NPJ Syst Biol Appl ; 10(1): 44, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678051

RESUMEN

Malaria vaccine development is hampered by extensive antigenic variation and complex life stages of Plasmodium species. Vaccine development has focused on a small number of antigens, many of which were identified without utilizing systematic genome-level approaches. In this study, we implement a machine learning-based reverse vaccinology approach to predict potential new malaria vaccine candidate antigens. We assemble and analyze P. falciparum proteomic, structural, functional, immunological, genomic, and transcriptomic data, and use positive-unlabeled learning to predict potential antigens based on the properties of known antigens and remaining proteins. We prioritize candidate antigens based on model performance on reference antigens with different genetic diversity and quantify the protein properties that contribute most to identifying top candidates. Candidate antigens are characterized by gene essentiality, gene ontology, and gene expression in different life stages to inform future vaccine development. This approach provides a framework for identifying and prioritizing candidate vaccine antigens for a broad range of pathogens.


Asunto(s)
Antígenos de Protozoos , Vacunas contra la Malaria , Malaria Falciparum , Plasmodium falciparum , Plasmodium falciparum/inmunología , Plasmodium falciparum/genética , Vacunas contra la Malaria/inmunología , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/genética , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Aprendizaje Automático , Humanos , Proteómica/métodos , Desarrollo de Vacunas/métodos , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/genética , Biología Computacional/métodos
2.
mSphere ; 8(5): e0045123, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37791774

RESUMEN

Antibody responses to variant surface antigens (VSAs) produced by the malaria parasite Plasmodium falciparum may contribute to age-related natural immunity to severe malaria. One VSA family, P. falciparum erythrocyte membrane protein-1 (PfEMP1), includes a subset of proteins that binds endothelial protein C receptor (EPCR) in human hosts and potentially disrupts the regulation of inflammatory responses, which may lead to the development of severe malaria. We probed peptide microarrays containing segments spanning five PfEMP1 EPCR-binding domain variants with sera from 10 Malian adults and 10 children to determine the differences between adult and pediatric immune responses. We defined serorecognized peptides and amino acid residues as those that elicited a significantly higher antibody response than malaria-naïve controls. We aimed to identify regions consistently serorecognized among adults but not among children across PfEMP1 variants, potentially indicating regions that drive the development of immunity to severe malaria. Adult sera consistently demonstrated broader and more intense serologic responses to constitutive PfEMP1 peptides than pediatric sera, including peptides in EPCR-binding domains. Both adults and children serorecognized a significantly higher proportion of EPCR-binding peptides than peptides that do not directly participate in receptor binding, indicating a preferential development of serologic responses at functional residues. Over the course of a single malaria transmission season, pediatric serological responses increased between the start and the peak of the season, but waned as the transmission season ended. IMPORTANCE Severe malaria and death related to malaria disproportionately affect sub-Saharan children under 5 years of age, commonly manifesting as cerebral malaria and/or severe malarial anemia. In contrast, adults in malaria-endemic regions tend to experience asymptomatic or mild disease. Our findings indicate that natural immunity to malaria targets specific regions within the EPCR-binding domain, particularly peptides containing EPCR-binding residues. Epitopes containing these residues may be promising targets for vaccines or therapeutics directed against severe malaria. Our approach provides insight into the development of natural immunity to a binding target linked to severe malaria by characterizing an "adult-like" response as recognizing a proportion of epitopes within the PfEMP1 protein, particularly regions that mediate EPCR binding. This "adult-like" response likely requires multiple years of malaria exposure, as increases in pediatric serologic response over a single malaria transmission season do not appear significant.


Asunto(s)
Malaria Falciparum , Malaria , Adulto , Niño , Humanos , Preescolar , Receptor de Proteína C Endotelial/metabolismo , Proteínas Protozoarias/metabolismo , Malaria Falciparum/parasitología , Epítopos , Péptidos
3.
Microorganisms ; 11(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37630530

RESUMEN

Malaria elimination may never succeed without the implementation of transmission-blocking strategies. The transmission of Plasmodium spp. parasites from the human host to the mosquito vector depends on circulating gametocytes in the peripheral blood of the vertebrate host. Once ingested by the mosquito during blood meals, these sexual forms undergo a series of radical morphological and metabolic changes to survive and progress from the gut to the salivary glands, where they will be waiting to be injected into the vertebrate host. The design of effective transmission-blocking strategies requires a thorough understanding of all the mechanisms that drive the development of gametocytes, gametes, sexual reproduction, and subsequent differentiation within the mosquito. The drastic changes in Plasmodium falciparum shape and function throughout its life cycle rely on the tight regulation of stage-specific gene expression. This review outlines the mechanisms involved in Plasmodium falciparum sexual stage development in both the human and mosquito vector, and zygote to oocyst differentiation. Functional studies unravel mechanisms employed by P. falciparum to orchestrate the expression of stage-specific functional products required to succeed in its complex life cycle, thus providing us with potential targets for developing new therapeutics. These mechanisms are based on studies conducted with various Plasmodium species, including predominantly P. falciparum and the rodent malaria parasites P. berghei. However, the great potential of epigenetics, genomics, transcriptomics, proteomics, and functional genetic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in studies using human malaria parasites and field isolates.

4.
Malar J ; 21(1): 357, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36447234

RESUMEN

BACKGROUND: The ability of malaria rapid diagnostic tests (RDTs) to effectively detect active infections is being compromised by the presence of malaria strains with genomic deletions at the hrp2 and hrp3 loci, encoding the antigens most commonly targeted in diagnostics for Plasmodium falciparum detection. The presence of such deletions can be determined in publically available P. falciparum whole genome sequencing (WGS) datasets. A computational approach was developed and validated, termed Gene Coverage Count and Classification (GC3), to analyse genome-wide sequence coverage data and provide informative outputs to assess presence and coverage profile of a target locus in WGS data. GC3 was applied to detect deletions at hrp2 and hrp3 (hrp2/3) and flanking genes in different geographic regions and across time points. METHODS: GC3 uses Python and R scripts to extract locus read coverage metrics from mapped WGS data according to user-defined parameters and generates relevant tables and figures. GC3 was tested using WGS data for laboratory reference strains with known hrp2/3 genotypes, and its results compared to those of a hrp2/3-specific qPCR assay. Samples with at least 25% of coding region positions with zero coverage were classified as having a deletion. Publicly available sequence data was analysed and compared with published deletion frequency estimates. RESULTS: GC3 results matched the expected coverage of known laboratory reference strains. Agreement between GC3 and a hrp2/3-specific qPCR assay reported for 19/19 (100%) hrp2 deletions and 18/19 (94.7%) hrp3 deletions. Among Cambodian (n = 127) and Brazilian (n = 20) WGS datasets, which had not been previously analysed for hrp2/3 deletions, GC3 identified hrp2 deletions in three and four samples, and hrp3 deletions in 10 and 15 samples, respectively. Plots of hrp2/3 coding regions, grouped by year of sample collection, showed a decrease in median standardized coverage among Malawian samples (n = 150) suggesting the importance of a careful, properly controlled follow up to determine if an increase in frequency of deletions has occurred between 2007-2008 and 2014-2015. Among Malian (n = 90) samples, median standardized coverage was lower in 2002 than 2010, indicating widespread deletions present at the gene locus in 2002. CONCLUSIONS: The GC3 tool accurately classified hrp2/3 deletions and provided informative tables and figures to analyse targeted gene coverage. GC3 is an appropriate tool when performing preliminary and exploratory assessment of locus coverage data.


Asunto(s)
Histidina , Comportamiento del Uso de la Herramienta , Plasmodium falciparum/genética , Secuenciación Completa del Genoma , Genotipo
5.
Antimicrob Agents Chemother ; 66(12): e0100122, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36321830

RESUMEN

The discovery and development of transmission-blocking therapies challenge malaria elimination and necessitate standard and reproducible bioassays to measure the blocking properties of antimalarial drugs and candidate compounds. Most of the current bioassays evaluating the transmission-blocking activity of compounds rely on laboratory-adapted Plasmodium strains. Transmission-blocking data from clinical gametocyte isolates could help select novel transmission-blocking candidates for further development. Using freshly collected Plasmodium falciparum gametocytes from asymptomatic individuals, we first optimized ex vivo culture conditions to improve gametocyte viability and infectiousness by testing several culture parameters. We next pre-exposed ex vivo field-isolated gametocytes to chloroquine, dihydroartemisinin, primaquine, KDU691, GNF179, and oryzalin for 48 h prior to direct membrane feeding. We measured the activity of the drug on the ability of gametocytes to resume the sexual life cycle in Anopheles after drug exposure. Using 57 blood samples collected from Malian volunteers aged 6 to 15 years, we demonstrate that the infectivity of freshly collected field gametocytes can be preserved and improved ex vivo in a culture medium supplemented with 10% horse serum at 4% hematocrit for 48 h. Moreover, our optimized drug assay displays the weak transmission-blocking activity of chloroquine and dihydroartemisinin, while primaquine and oryzalin exhibited a transmission-blocking activity of ~50% at 1 µM. KDU691 and GNF179 both interrupted Plasmodium transmission at 1 µM and 5 nM, respectively. This new approach, if implemented, has the potential to accelerate the screening of compounds with transmission-blocking activity.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Plasmodium falciparum , Primaquina , Malaria Falciparum/prevención & control , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico
6.
Front Genet ; 13: 943445, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267403

RESUMEN

Plasmodium falciparum malaria cases in Africa represent over 90% of the global burden with Mali being amongst the 11 highest burden countries that account for 70% of this annual incidence. The persistence of P. falciparum despite massive global interventions is because of its genetic diversity that drives its ability to adapt to environmental changes, develop resistance to drugs, and evade the host immune system. Knowledge on P. falciparum genetic diversity across populations and intervention landscape is thus critical for the implementation of new strategies to eliminate malaria. This study assessed genetic variation with 12,177 high-quality SNPs from 830 Malian P. falciparum isolates collected between 2007 and 2017 from seven locations. The complexity of infections remained high, varied between sites, and showed a trend toward overall decreasing complexity over the decade. Though there was no significant substructure, allele frequencies varied geographically, partly driven by temporal variance in sampling, particularly for drug resistance and antigen loci. Thirty-two mutations in known drug resistance markers (pfcrt, pfdhps, pfdhfr, pfmdr1, pfmdr2, and pfk13) attained a frequency of at least 2% in the populations. SNPs within and around the major markers of resistance to quinolines (pfmdr1 and pfcrt) and antifolates (pfdhfr and pfdhps) varied temporally and geographically, with strong linkage disequilibrium and signatures of directional selection in the genome. These geo-temporal populations also differentiated at alleles in immune-related loci, including, protein E140, pfsurfin8, pfclag8, and pfceltos, as well as pftrap, which showed signatures of haplotype differentiation between populations. Several regions across the genomes, including five known drug resistance loci, showed signatures of differential positive selection. These results suggest that drugs and immune pressure are dominant selective forces against P. falciparum in Mali, but their effect on the parasite genome varies temporally and spatially. Interventions interacting with these genomic variants need to be routinely evaluated as malaria elimination strategies are implemented.

7.
Microorganisms ; 10(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35744609

RESUMEN

Failure to account for genetic diversity of antigens during vaccine design may lead to vaccine escape. To evaluate the vaccine escape potential of antigens used in vaccines currently in development or clinical testing, we surveyed the genetic diversity, measured population differentiation, and performed in silico prediction and analysis of T-cell epitopes of ten such Plasmodium falciparum pre-erythrocytic-stage antigens using whole-genome sequence data from 1010 field isolates. Of these, 699 were collected in Africa (Burkina Faso, Cameroon, Guinea, Kenya, Malawi, Mali, and Tanzania), 69 in South America (Brazil, Colombia, French Guiana, and Peru), 59 in Oceania (Papua New Guinea), and 183 in Asia (Cambodia, Myanmar, and Thailand). Antigens surveyed include cell-traversal protein for ookinetes and sporozoites, circumsporozoite protein, liver-stage antigens 1 and 3, sporozoite surface proteins P36 and P52, sporozoite asparagine-rich protein-1, sporozoite microneme protein essential for cell traversal-2, and upregulated-in-infectious-sporozoite 3 and 4 proteins. The analyses showed that a limited number of these protein variants, when combined, would be representative of worldwide parasite populations. Moreover, predicted T-cell epitopes were identified that could be further explored for immunogenicity and protective efficacy. Findings can inform the rational design of a multivalent malaria vaccine.

8.
Am J Trop Med Hyg ; 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35226874

RESUMEN

Throughout a phase IIIb/IV efficacy study of repeated treatment with four artemisinin-based combination therapies, significant heterogeneity was found in the number of clinical episodes experienced by individuals during the 2-year follow-up. Several factors, including host, parasite, and environmental factors, may contribute to the differential malaria incidence. We aimed to identify risk factors of malaria incidence in the context of a longitudinal study of the efficacy of different artemisinin-based combination therapy regimens in Bougoula-Hameau, a high-transmission setting in Mali. Risk factors including age, residence, and treatment regimen were compared among individuals experiencing eight or more clinical episodes of malaria ("high-incidence group") and individuals experiencing up to three clinical episodes ("low-incidence group"). Consistent with the known association between age and malaria risk in high-transmission settings, individuals in the high incidence group were significantly younger than individuals in the low-risk group (mean age, 7.0 years versus 10.6 years, respectively; t-test, P < 0.0001). Compared with individuals receiving artemether-lumefantrine, those receiving artesunate-amodiaquine had greater odds of being in the high-incidence group (odds ratio [OR], 2.24; 95% CI, 1.03 - 4.83, P = 0.041), while individuals receiving dihydroartemisinin-piperaquine had a lower odds of being in high incidence group (OR: 0.30, 95% CI, 0.11-0.85; P = 0.024). Individuals residing in the forested areas of Sokourani and Karamogobougou had significantly greater odds of being in the high-incidence group compared with individuals residing in the semi-urban area of Bougoula-Hameau 1 (Karamogobougou: OR, 3.68; 95% CI, 1.46-9.31; P = 0.0059; Sokourani: OR, 11.46; 95% CI, 4.49-29.2; P < 0.0001). This study highlights the importance of fine-mapping malaria risks even at sub-district levels for targeted and customized interventions.

9.
mSystems ; 6(6): e0022621, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34846163

RESUMEN

var genes encode Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) antigens. These highly diverse antigens are displayed on the surface of infected erythrocytes and play a critical role in immune evasion and sequestration of infected erythrocytes. Studies of var expression using non-leukocyte-depleted blood are challenging because of the predominance of host genetic material and lack of conserved var segments. Our goal was to enrich for parasite RNA, allowing de novo assembly of var genes and detection of expressed novel variants. We used two overall approaches: (i) enriching for total mRNA in the sequencing library preparations and (ii) enriching for parasite RNA with a custom capture array based on Roche's SeqCap EZ enrichment system. The capture array was designed with probes based on the whole 3D7 reference genome and an additional >4,000 full-length var gene sequences from other P. falciparum strains. We tested each method on RNA samples from Malian children with severe or uncomplicated malaria infections. All reads mapping to the human genome were removed, the remaining reads were assembled de novo into transcripts, and from these, var-like transcripts were identified and annotated. The capture array produced the longest maximum length and largest numbers of var gene transcripts in each sample, particularly in samples with low parasitemia. Identifying the most-expressed var gene sequences in whole-blood clinical samples without the need for extensive processing or generating sample-specific reference genome data is critical for understanding the role of PfEMP1s in malaria pathogenesis. IMPORTANCE Malaria parasites display antigens on the surface of infected red blood cells in the human host that facilitate attachment to blood vessels, contributing to the severity of infection. These antigens are highly variable, allowing the parasite to evade the immune system. Identifying these expressed antigens is critical to understanding the development of severe malarial disease. However, clinical samples contain limited amounts of parasite genetic material, a challenge for sequencing efforts further compounded by the extreme diversity of the parasite surface antigens. We present a method that enriches for these antigen sequences in clinical samples using a custom capture array, requiring minimal processing in the field. While our results are focused on the malaria parasite Plasmodium falciparum, this approach has broad applicability to other highly diverse antigens from other parasites and pathogens such as those that cause giardiasis and leishmaniasis.

10.
NPJ Vaccines ; 6(1): 115, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518543

RESUMEN

Knowledge of the Plasmodium falciparum antigens that comprise the human liver stage immunoproteome is important for pre-erythrocytic vaccine development, but, compared with the erythrocytic stage immunoproteome, more challenging to classify. Previous studies of P. falciparum antibody responses report IgG and rarely IgA responses. We assessed IgG and IgA antibody responses in adult sera collected during two controlled human malaria infection (CHMI) studies in malaria-naïve volunteers and in 1- to 6-year-old malaria-exposed Malian children on a 251 P. falciparum antigen protein microarray. IgG profiles in the two CHMI groups were equivalent and differed from Malian children. IgA profiles were robust in the CHMI groups and a subset of Malian children. We describe immunoproteome differences in naïve vs. exposed individuals and report pre-erythrocytic proteins recognized by the immune system. IgA responses detected in this study expand the list of pre-erythrocytic antigens for further characterization as potential vaccine candidates.

11.
PLoS Genet ; 17(5): e1009576, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34033654

RESUMEN

Individuals acquire immunity to clinical malaria after repeated Plasmodium falciparum infections. Immunity to disease is thought to reflect the acquisition of a repertoire of responses to multiple alleles in diverse parasite antigens. In previous studies, we identified polymorphic sites within individual antigens that are associated with parasite immune evasion by examining antigen allele dynamics in individuals followed longitudinally. Here we expand this approach by analyzing genome-wide polymorphisms using whole genome sequence data from 140 parasite isolates representing malaria cases from a longitudinal study in Malawi and identify 25 genes that encode possible targets of naturally acquired immunity that should be validated immunologically and further characterized for their potential as vaccine candidates.


Asunto(s)
Alelos , Genoma/genética , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Adolescente , Adulto , Envejecimiento/inmunología , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Malaui , Adulto Joven
12.
J Infect Dis ; 223(11): 1943-1947, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32992328

RESUMEN

Circumsporozoite protein (CSP) coats the Plasmodium falciparum sporozoite surface and is a major malaria subunit vaccine target. We measured epitope-specific reactivity to field-derived CSP haplotypes in serum samples from Malian adults and children on a custom peptide microarray. Compared to children, adults showed greater antibody responses and responses to more variants in regions proximal to and within the central repeat region. Children acquired short-lived immunity to an epitope proximal to the central repeat region but not to the central repeat region itself. This approach has the potential to differentiate immunodominant from protective epitope-specific responses when combined with longitudinal infection data.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Formación de Anticuerpos , Vacunas contra la Malaria , Malaria Falciparum , Adulto , Niño , Epítopos , Humanos , Vacunas contra la Malaria/inmunología , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malí , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Vacunas de Subunidad/inmunología
13.
Front Immunol ; 11: 561142, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281811

RESUMEN

Repeated infections by Plasmodium falciparum result in a humoral response that could reduce disease symptoms and prevent the development of clinical malaria. The principal mechanism underlying this humoral response is that immunoglobulin G (IgG) binds directly to the parasites, thus causing their neutralization. However, the action of antibodies alone is not always sufficient to eliminate pathogens from an organism. One key element involved in the recognition of IgG that plays a crucial role in the destruction of the parasites responsible for spreading malaria is the family of Fc gamma receptors. These receptors are expressed on the surface of immune cells. Several polymorphisms have been detected in the genes encoding these receptors, associated with susceptibility or resistance to malaria in different populations. In this review, we describe identified polymorphisms within the family of Fc gamma receptors and the impact of these variations on the response of a host to infection as well as provide new perspectives for the design of an effective vaccine for malaria.


Asunto(s)
Predisposición Genética a la Enfermedad , Malaria/etiología , Polimorfismo Genético , Receptores de IgG/genética , Alelos , Enfermedades Endémicas , Evolución Molecular , Regulación de la Expresión Génica , Pruebas Genéticas , Genotipo , Interacciones Huésped-Parásitos/genética , Humanos , Malaria/epidemiología , Malaria/prevención & control , Vacunas contra la Malaria/inmunología , Familia de Multigenes , Polimorfismo de Nucleótido Simple , Vigilancia de la Población , Unión Proteica , Receptores de IgG/metabolismo
14.
Vaccine ; 38(35): 5700-5706, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32571720

RESUMEN

To prevent premature dismissal of promising vaccine programs, it is critical to determine if lack of efficacy in the field is due to allele specific-efficacy, rather than to the lack of immunogenicity of the candidate antigen. Here we use samples collected during a field trial of the AMA1-based FMP2.1/AS02A malaria vaccine, which incorporates the AMA1 variant encoded by the reference Plasmodium falciparum 3D7 strain, to assess the usefulness of epitope-based sieve analysis for the detection of vaccine-induced allele-specific immune responses. The samples used are from volunteers who received the malaria vaccine FMP2.1/AS02A or a control (rabies vaccine), during a vaccine efficacy field trial, and who later developed malaria. In a previous study, P. falciparum DNA was extracted from all samples, and the ama1 locus amplified and sequenced. Here, a sieve analysis was used to measure T and B-cell escape, and difference in 3D7-like epitopes in the two treatment arms. Overall, no difference was observed in mean amino acid distance to the 3D7 AMA1 variant between sequences from vaccinees and controls in B-cell epitopes. However, we found a significantly greater proportion of 3D7-like T-cell epitopes that map to the AMA1 cluster one loop (c1L) region in the control vs. the vaccinee group (p = 0.02), consistent with allele-specific vaccine efficacy. Interestingly, AMA1 epitopes in infections from vaccinees had higher mean IC50, and consequently lower binding affinity, than epitopes generated from the control group (p = 0.01), suggesting that vaccine-induced selection impacted the immunological profile of the strains that pass through the sieve imposed by the vaccine-induced protection. These findings are consistent with a vaccine-derived sieve effect on the c1L region of AMA1 and suggest that sieve analyses of malaria vaccine trial samples targeted to epitopes identified in silico can help identify protective malaria antigens that may be efficacious if combined in a multivalent vaccine.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Anticuerpos Antiprotozoarios , Antígenos de Protozoos/genética , Epítopos/genética , Humanos , Malaria Falciparum/prevención & control , Proteínas de la Membrana/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
15.
Sci Rep ; 10(1): 3952, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32127565

RESUMEN

Vaccines based on Plasmodium falciparum apical membrane antigen 1 (AMA1) have failed due to extensive polymorphism in AMA1. To assess the strain-specificity of antibody responses to malaria infection and AMA1 vaccination, we designed protein and peptide microarrays representing hundreds of unique AMA1 variants. Following clinical malaria episodes, children had short-lived, sequence-independent increases in average whole-protein seroreactivity, as well as strain-specific responses to peptides representing diverse epitopes. Vaccination resulted in dramatically increased seroreactivity to all 263 AMA1 whole-protein variants. High-density peptide analysis revealed that vaccinated children had increases in seroreactivity to four distinct epitopes that exceeded responses to natural infection. A single amino acid change was critical to seroreactivity to peptides in a region of AMA1 associated with strain-specific vaccine efficacy. Antibody measurements using whole antigens may be biased towards conserved, immunodominant epitopes. Peptide microarrays may help to identify immunogenic epitopes, define correlates of vaccine protection, and measure strain-specific vaccine-induced antibodies.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Formación de Anticuerpos/fisiología , Antígenos de Protozoos/inmunología , Proteínas de la Membrana/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Formación de Anticuerpos/inmunología , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/patogenicidad
16.
Genome Med ; 12(1): 6, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31915075

RESUMEN

BACKGROUND: Plasmodium falciparum (Pf) whole-organism sporozoite vaccines have been shown to provide significant protection against controlled human malaria infection (CHMI) in clinical trials. Initial CHMI studies showed significantly higher durable protection against homologous than heterologous strains, suggesting the presence of strain-specific vaccine-induced protection. However, interpretation of these results and understanding of their relevance to vaccine efficacy have been hampered by the lack of knowledge on genetic differences between vaccine and CHMI strains, and how these strains are related to parasites in malaria endemic regions. METHODS: Whole genome sequencing using long-read (Pacific Biosciences) and short-read (Illumina) sequencing platforms was conducted to generate de novo genome assemblies for the vaccine strain, NF54, and for strains used in heterologous CHMI (7G8 from Brazil, NF166.C8 from Guinea, and NF135.C10 from Cambodia). The assemblies were used to characterize sequences in each strain relative to the reference 3D7 (a clone of NF54) genome. Strains were compared to each other and to a collection of clinical isolates (sequenced as part of this study or from public repositories) from South America, sub-Saharan Africa, and Southeast Asia. RESULTS: While few variants were detected between 3D7 and NF54, we identified tens of thousands of variants between NF54 and the three heterologous strains. These variants include SNPs, indels, and small structural variants that fall in regulatory and immunologically important regions, including transcription factors (such as PfAP2-L and PfAP2-G) and pre-erythrocytic antigens that may be key for sporozoite vaccine-induced protection. Additionally, these variants directly contributed to diversity in immunologically important regions of the genomes as detected through in silico CD8+ T cell epitope predictions. Of all heterologous strains, NF135.C10 had the highest number of unique predicted epitope sequences when compared to NF54. Comparison to global clinical isolates revealed that these four strains are representative of their geographic origin despite long-term culture adaptation; of note, NF135.C10 is from an admixed population, and not part of recently formed subpopulations resistant to artemisinin-based therapies present in the Greater Mekong Sub-region. CONCLUSIONS: These results will assist in the interpretation of vaccine efficacy of whole-organism vaccines against homologous and heterologous CHMI.


Asunto(s)
Inmunogenicidad Vacunal , Vacunas contra la Malaria/genética , Plasmodium falciparum/inmunología , Polimorfismo Genético , Linfocitos T CD8-positivos/inmunología , Ensayos Clínicos como Asunto/estadística & datos numéricos , Genoma de Protozoos , Humanos , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/genética
17.
Malar J ; 18(1): 273, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409360

RESUMEN

BACKGROUND: Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) antigens play a critical role in host immune evasion. Serologic responses to these antigens have been associated with protection from clinical malaria, suggesting that antibodies to PfEMP1 antigens may contribute to natural immunity. The first N-terminal constitutive domain in a PfEMP1 is the Duffy binding-like alpha (DBL-α) domain, which contains a 300 to 400 base pair region unique to each particular protein (the DBL-α "tag"). This DBL-α tag has been used as a marker of PfEMP1 diversity and serologic responses in malaria-exposed populations. In this study, using sera from a malaria-endemic region, responses to DBL-α tags were compared to responses to the corresponding entire DBL-α domain (or "parent" domain) coupled with the succeeding cysteine-rich interdomain region (CIDR). METHODS: A protein microarray populated with DBL-α tags, the parent DBL-CIDR head structures, and downstream PfEMP1 protein fragments was probed with sera from Malian children (aged 1 to 6 years) and adults from the control arms of apical membrane antigen 1 (AMA1) vaccine clinical trials before and during a malaria transmission season. Serological responses to the DBL-α tag and the DBL-CIDR head structure were measured and compared in children and adults, and throughout the season. RESULTS: Malian serologic responses to a PfEMP1's DBL-α tag region did not correlate with seasonal malaria exposure, or with responses to the parent DBL-CIDR head structure in either children or adults. Parent DBL-CIDR head structures were better indicators of malaria exposure. CONCLUSIONS: Larger PfEMP1 domains may be better indicators of malaria exposure than short, variable PfEMP1 fragments such as DBL-α tags. PfEMP1 head structures that include conserved sequences appear particularly well suited for study as serologic predictors of malaria exposure.


Asunto(s)
Antígenos de Protozoos/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/inmunología , Adulto , Niño , Preescolar , Secuencia Conservada , Humanos , Lactante , Persona de Mediana Edad , Estructura Terciaria de Proteína , Adulto Joven
18.
Malar J ; 18(1): 217, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31242921

RESUMEN

The intensification of malaria control interventions has resulted in its global decline, but it remains a significant public health burden especially in sub-Saharan Africa (sSA). Knowledge on the parasite diversity, its transmission dynamics, mechanisms of adaptation to environmental and interventional pressures could help refine or develop new control and elimination strategies. Critical to this is the accurate assessment of the parasite's genetic diversity and monitoring of genetic markers of anti-malarial resistance across all susceptible populations. Such wide molecular surveillance will require selected tools and approaches from a variety of ever evolving advancements in technology and the changing epidemiology of malaria. The choice of an effective approach for specific endemic settings remains challenging, particularly for countries in sSA with limited access to advanced technologies. This article examines the current strategies and tools for Plasmodium falciparum genetic diversity typing and resistance monitoring and proposes how the different tools could be employed in resource-poor settings. Advanced approaches enabling targeted deep sequencing is valued as a sensitive method for assessing drug resistance and parasite diversity but remains out of the reach of most laboratories in sSA due to the high cost of development and maintenance. It is, however, feasible to equip a limited number of laboratories as Centres of Excellence in Africa (CEA), which will receive and process samples from a network of peripheral laboratories in the continent. Cheaper, sensitive and portable real-time PCR methods can be used in peripheral laboratories to pre-screen and select samples for targeted deep sequence or genome wide analyses at these CEAs.


Asunto(s)
Erradicación de la Enfermedad/métodos , Resistencia a Medicamentos , Variación Genética , Malaria Falciparum/prevención & control , Plasmodium falciparum , África del Sur del Sahara , Antimaláricos/uso terapéutico , Erradicación de la Enfermedad/instrumentación , Humanos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética
19.
mSphere ; 4(2)2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894432

RESUMEN

The repetitive interspersed family (RIFIN) and the subtelomeric variable open reading frame (STEVOR) family represent two of three major Plasmodium falciparum variant surface antigen families involved in malaria pathogenesis and immune evasion and are potential targets in the development of natural immunity. Protein and peptide microarrays populated with RIFINs and STEVORs associated with severe malaria vulnerability in Malian children were probed with adult and pediatric sera to identify epitopes that reflect malaria exposure. Adult sera recognized and reacted with greater intensity to all STEVOR proteins than pediatric sera did. Serorecognition of and seroreactivity to peptides within the semiconserved domain of STEVORs increased with age and seasonal malaria exposure, while serorecognition and seroreactivity increased for the semiconserved and second hypervariable domains of RIFINs only with age. Serologic responses to RIFIN and STEVOR peptides within the semiconserved domains may play a role in natural immunity to severe malaria.IMPORTANCE Malaria, an infectious disease caused by the parasite Plasmodium falciparum, causes nearly 435,000 deaths annually worldwide. RIFINs and STEVORs are two variant surface antigen families that are involved in malaria pathogenesis and immune evasion. Recent work has shown that a lack of humoral immunity to these proteins is associated with severe malaria vulnerability in Malian children. This is the first study to have compared serologic responses of children and adults to RIFINs and STEVORs in settings of malaria endemicity and to examine such serologic responses before and after a clinical malaria episode. Using microarrays, we determined that the semiconserved domains in these two parasite variant surface antigen families harbor peptides whose seroreactivity reflects malaria exposure. A similar approach has the potential to illuminate the role of variant surface antigens in the development of natural immunity to clinical malaria. Potential vaccines for severe malaria should include consideration of peptides within the semiconserved domains of RIFINs and STEVORs.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Secuencias Repetitivas Esparcidas/inmunología , Malaria/inmunología , Adolescente , Adulto , Factores de Edad , Antígenos de Protozoos/genética , Niño , Preescolar , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Enfermedades Endémicas , Femenino , Humanos , Inmunidad Innata , Lactante , Malaria/sangre , Masculino , Malí/epidemiología , Persona de Mediana Edad , Péptidos/genética , Péptidos/inmunología , Plasmodium falciparum , Análisis por Matrices de Proteínas , Adulto Joven
20.
Malar J ; 18(1): 13, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30658710

RESUMEN

BACKGROUND: A malaria vaccine based on Plasmodium falciparum apical membrane antigen 1 (AMA1) elicited strain specific efficacy in Malian children that waned in the second season after vaccination despite sustained AMA1 antibody titers. With the goal of identifying a humoral correlate of vaccine-induced protection, pre- and post-vaccination sera from children vaccinated with the AMA1 vaccine and from a control group that received a rabies vaccine were tested for AMA1-specific immunoglobulin G (IgG) subclasses (IgG1, IgG2, IgG3, and IgG4) and for antibody avidity. METHODS: Samples from a previously completed Phase 2 AMA1 vaccine trial in children residing in Mali, West Africa were used to determine AMA1-specific IgG subclass antibody titers and avidity by ELISA. Cox proportional hazards models were used to assess correlation between IgG subclass antibody titers and risk of time to first or only clinical malaria episode and risk of multiple episodes. Asexual P. falciparum parasite density measured for each child as area under the curve were used to assess correlation between IgG subclass antibody titers and parasite burden. RESULTS: AMA1 vaccination did not elicit a change in antibody avidity; however, AMA1 vaccinees had a robust IgG subclass response that persisted over the malaria transmission season. AMA1-specific IgG subclass responses were not associated with decreased risk of subsequent clinical malaria. For the AMA1 vaccine group, IgG3 levels at study day 90 correlated with high parasite burden during days 90-240. In the control group, AMA1-specific IgG subclass rise and persistence over the malaria season was modest and correlated with age. In the control group, titers of several IgG subclasses at days 90 and 240 correlated with parasite burden over the first 90 study days, and IgG3 at day 240 correlated with parasite burden during days 90-240. CONCLUSIONS: Neither IgG subclass nor avidity was associated with the modest, strain-specific efficacy elicited by this blood stage malaria vaccine. Although a correlate of protection was not identified, correlations between subclass titers and age, and correlations between IgG subclass titers and parasite burden, defined by area under the curve parasitaemia levels, were observed, which expand knowledge about IgG subclass responses. IgG3, known to have the shortest half-life of the IgG subclasses, might be the most temporally relevant indicator of ongoing malaria exposure when examining antibody responses to AMA1.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Afinidad de Anticuerpos/inmunología , Antígenos de Protozoos/inmunología , Inmunoglobulina G/inmunología , Vacunas contra la Malaria/inmunología , Proteínas de la Membrana/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Antígenos de Protozoos/administración & dosificación , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Malí , Proteínas de la Membrana/administración & dosificación , Proteínas Protozoarias/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...